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I. INTRODUCTION 

This report describes the computer simulation of an Enhanced TCAS 

I1 antenna tracking a single target when it is mounted on top of the 

fuselage of a Boeing 737 aircraft. 

can be negatively affected by many different aspects, such as 

interference, hardware-related errors, thermal noise, stability of the 

inertial navigation system, the distortion of antenna patterns by own 

aircraft, etc. This report primarily investigates the structural 

scattering effects of a Boeing 737 on a TCAS I1 antenna in terms of 

angular and miss distance errors. 

of primary concern here because angular errors, after filtering, 

directly affect the accuracy of miss distance detection. Furthermore, 

the greater the uncertainty of miss distance detection, the greater are 

the threshold levels required to detect any threat of collision, which 

in turn can lead t o  more false alarms. 

The performance of a TCAS I1 system 

Angular and miss distance errors are 

The OSU aircraft code (11 is used to generate two sets of monopulse 

characteristic curves. The first set is generated with the TCAS I1 

array mounted on the fuselage of a Boeing 737 with no wings and tail 

attached, and it will be referred to as the lookup table. The second 

set is generated by adding two wings and a vertical stabilizer to the 

above simulated model. This way, a more realistic model is used for the 

aircraft. The data obtained from the second set is entered to the 

lookup table to obtain the detected bearing angles of the target with 

respect to the protected aircraft. Furthermore, the error budget 

estimated by Sinsky and Tier in Reference 

noise. With this simulated noise and the 

[ 2 ]  is also used to simulate 

two sets of monopulse 
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characteristic curves, a more accurate model of the TCAS I1 system can 

be constructed. Thus, all the sources of error are divided into two 

groups; namely, structural scattering and a noise generator which 

combines all the sources of error besides structural scattering. It is 

noted that the simulation can be displayed in color with the Graphical 

Kernal System (GKS). The color display shows real and detected target 

locations on the Tektronix 4129 terminal which are updated every second. 

The real and detected time to the closest point of approach (time to 

CPA), the horizontal miss distance, the speed and the relative height of 

the target are also displayed on the graphics terminal. The equations 

used to calculate the miss distance, time to CPA and the speed of the 

target are given in Section 11. A more detailed discussion of these 

equations can be found in [2-51. 

11. SIHULATION 

Our simulation involves the tracking of a single target approaching 

the protected aircraft. The path of the target is arbitrary and it can 

be changed when the program is being run. 

array mounted on a Boeing 737 has been reported in [6-81 and it will not 

be discussed here. 

path, noise, the alpha beta filter and the threat detecting algorithm. 

These four components are the most important in our computer model. 

is noted that each one can affect the performances of the TCAS I1 

system, and thus, it is necessary to carefully study them. 

The simulation of a TCAS I1 

This report deals with the simulation of a target 

It 

The alpha beta filter minimizes the effect of noise, and it also 

gives an estimate of the target’s present position, the predicted 
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position and its velocity. Moreover, the threat detecting algorithm 

depends on the output of this filter. Thus, the number of false alarms 

does not only depend on how severe the noise is, but also on how well 

the filter smooths the noise. 

The Enhanced TCAS I1 system has two arrays: one mounted on the top 

of the fuselage and the other on the bottom of the fuselage. The top 

mounted antenna is supposed to search for targets located above the 

aircraft while the bottom one searches targets below the aircraft. 

Without loss of generality, only the top mounted antenna is simulated in 

this report. The same procedure as described here can be followed to 

simulate the bottom mounted antenna. However, since the computer model 

of the aircraft depends on the antenna location, the computer model of 

the aircraft for the bottom mounted antenna will be different from the 

one used for the top mounted antenna. 

Two sets of monopulse curves are used to study the scattering 

effects of the wings and the vertical stabilizer. Each set consists of 

8 monopulse curves covering the azimuth plane at a fixed elevation 

angle. Since there are 8 beam positions, each monopulse curve is 

responsible for an azimuth sector of 45 O o .  

curves [ 4 , 6 ]  are calculated at 15 elevation angles covering angles of 0, 

1, 2 ,  3, 4 ,  5 ,  6 ,  7 ,  8 ,  9, 10, 15, 20, 25 and 30 degrees. If the target 

elevation is between two of the above angles, its azimuth angle is 

determined by averaging the two azimuth angles corresponding to these 

two elevation angles. 

Monopulse characteristic 

Furthermore, if the target elevation is above 

30°, the 

Figure 1 

monopulse curve corresponding to 30° is used. 

shows a pair of monopulse curves. 

As an example, 

If the monopulse receiver 
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reads a value of 4 dB, corresponding to a target bearing of 1" off 

boresight, the lookup monopulse curve indicates that the detected target 

bearing is about 7 O  off boresight. 

structural scattering of the protected aircraft is about 6 O  for this 

particular case. 

Thus, the error due to the 

A. Simulation of a Target Path 

Although only the last 40 seconds of the target's flight path are 

shown on the Tektronix 4129 terminal, our computer model tracks a target 

for 60 seconds before the CPA. In our simulation, there is no 

restriction of the distance of the target from the protected aircraft. 

As mentioned before, the display routine is written in GKS language 

where the real and detected target locations are updated every second. 

Furthermore, the threshold boundaries are also shown on the screen. An 

example of this display can be seen in the next section, i.e., in 

Figures 27, 35, 53 and 55. Appendix 1 defines each symbol and the 

color-code used in these figures. 

The coordinate system used in this routine is fixed with the 

protected aircraft. Thus, all the input data is understood to be 

referred to this coordinate system. The inputs to the program are the 

height, the speed and the starting position of the target. In addition 

to these data, the parameters of an arbitrarily oriented straight line 

(target's path) are also needed. 

read in from a data file. Likewise, noise can be simulated by the 

program or it can be read in from outside. 

height can be changed during the last 40 seconds of the simulated 

Note that a curved path can also be 
' 

The target's path, speed and 
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flight. The program then calculates the target's bearing, bearing rate, 

miss distance and time to CPA; however, the last three parameters are 

not accurate for a curved path since they are calculated assuming a 

straight path. When the path is straight, the exact and calculated 

parameters are compared to obtain errors incurred in calculating these 

parameters. If the target poses a threat, the program gives a warning, 

and a subsequent escape path can be executed. The target poses a threat 

when the calculated miss distance is within the threshold curves. 

B. Noise Simulation 

In order to have a more realistic model of the TCAS I1 system, 

noise is also included in our computer model. Sinsky and Tier [ 2 ]  found 

that there are four main sources of error in the TCAS I1 system; namely, 

hardware-related errors, structural scattering, thermal noise and errors 

introduced by the inertial navigation system. A summary of these 

sources of error is depicted in Figure 2. It is also shown in [ 2 ]  that 

the standard deviation of the bearing error uB falls between 1.4' and 

2 . 8 O ,  depending on the transponder reply signal-to-noise ratio SIN. 

Table 1 gives values relating S/N to transponder power and target range. 

It turns out that 

(S/N)o/10 - 2 loglO(R/Ro) 
S/N = 10 
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Table 1 

Power 

Signal to Noise Ratio for Two Power Levels 
of the Target's Transponder Transmitted Power 

(Obtained from Ref. [Z]) 

RO Ratio 
I I I I 18.5 dBo I 17.9 dB 20 NMi I I 27 dBo I 26.4 dB I 20 NMI 

where 

Equation (1) is given in dBs and the target range R in nautical miles. 

All the errors mentioned above can be combined to obtain the 

and Ro are defined in Table 1. It is noted that (S/N)o in 

following expression [ 2 ]  

aB = (1.13' (0.97' + (0*35 SIN 64)' + 0.71') + 0.14'r 

In Equation (2), 0.71O is the contribution from the structural 

scattering. This value was calculated in [2] assuming that targets are 

uniformly distributed in angle 360° around the protected aircraft. In 

our simulation, the error introduced by structural scattering is 

determined by the two sets of monopulse curves defined in the 

introduction. Thus, structural scattering introduces deterministic and 

not statistical errors. Therefore, the noise that is simulated in our 

program is assumed to be Gaussian noise with zero mean and with a 

standard deviation given by 

6 



“B = (l.132 (0.97’ 

Equations (2) and are plotted 

+ o.142]H . (3) 

n Figure 3 to show the effects 

It can of the estimated scattering error as the target range changes. 

be seen that in general the structural scattering contributes to the 

errors in detecting the target bearing; however, when the target range 

increases, the scattering effects becomes less significant as the noise 

will dominate the overall angle detection accuracy. 

C. Simulation of the Alpha Beta Filter 

According to Sinsky [5], the function of an alpha beta filter is to 

accept samples of the target position and to filter this data so that 

the resulting output samples are the smoothed estimates of the present 

position, the predicted position and the velocity of the target. These 

filter characteristics have been optimized in the TCAS I1 system so that 

the uncorrelated errors are minimized, while the filter can still be 

fast enough to detect changes in the target path. 

beta filter parameters represent a compromise between noise reduction on 

one hand and target tracking on the other. The parameters used for the 

filter are -0.25 and b0.066. 

can be defined by the following difference equations [5] 

The optimized alpha 

The alpha beta filter implemented here 

(4) 

(5) 
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where 

T = sampling time interval which is 1 second in this case 

Xk = kth measurement of X 

Xk = smoothed estimate of X at the kth time index 

kk = smoothed estimate of i at the kth time index 

X = predicted value of X at the kth time index. 

- 
- 

Pk 

Note that i is the derivative of X with respect to time. 
output determines the bearing rate B,, which is given by the following 

equation [ 2 1  

The filter 

i -  
k -  ( x; + t) (7) 

The bearing rate can be translated directly into horizontal miss 

distance estimation, denoted by M, in this report, which is given by 

[31 
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It can be shown that for collision courses or near collision courses, 

the time to CPA, 'ck, can be approximately expressed as (21  

Tk = (9) 

Combining Equations (8) and (9), the miss distance estimation for a 

collision or a near collision course can be rewritten as (31 

Mk = X + Yk BkTk = 

The miss distance error &Mk can then be approximated by estimating the 

bearing rate error. It follows from Equation (10) that 

The above equation holds only when reasonable estimates on 1- and 

are available. Since miss distance error is closely related 

to the bearing rate error, it is important to study the sources of 

bearing rate error. For completeness, a summary of the sources of 

bearing rate error are given in Figure 4. 

4 can be found in [2]. 

All the details about Figure 
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D. Simulation of the Threat Detecting Algorithm 

The most important result in Section C is Equation (11). This 

equation indicates that the error in estimating horizontal miss distance 

is directly proportional to the error in estimating the bearing rate, 

provided the estimates of T~ and are reasonable. Furthermore, 

according to Sinsky and Tier [2], if the target's horizontal miss 

distance is at least three times the one-sigma uncertainty in miss 

distance, then collision avoidance is virtually assured. Thus, the 

effectiveness of the threshold depends on how accurate the estimate of 

the bearing rate is. The variance of the bearing rate error is computed 

in [ 2 ]  and only the final expression is given here, namely: 

u. = {(O.Ol (0.36' + (0*35 S I N  64)') + (0.71 x 0.081)')l.132 
B r + 0.0001382(0.352 + 0.3S2 + 1.) 

where S I N  was defined in (1). It follows from (11) that the variance of 

the horizontal miss distance (urn) can be written the following way: 

u li + ir T' u, 
B m 

In our model, the threshold for horizontal miss distance is set at three 

times the variance of the miss distance estimation error given in 

Equation (13), plus a safety margin of 1000 ft. When the detected miss 

10 



distance is less than the threshold level, there is a potential for 

collision. The program then checks the relative height of the target. 

If its relative height is less than 300 ft., a warning is issued and a 

subsequent escape curve can be taken. In this report, one of three 

escape curves obtained from Reference [ 9 ]  can be chosen, namely the 10 

second rollover to 30° path, the 6 second rollover to 4 5 O  path and the 6 

second rollover to 30° path. When the plane follows one of these escape 

curves shown in Figure 5 at 275 knots, it will accelerate laterally to 

avoid a collision. 

it will roll due to the centrifugal force acting on it. 

rolling of an aircraft will change the relative target position with 

respect to the turning aircraft. In our present computer model, this 

rolling effect has not yet been included; however, this will be our next 

step in this research effort. 

Note that when an aircraft takes on any curved path, 

Thus, the 

When the detected miss distance lies within the threshold 

boundaries, an alarm is given. If the aircraft then follows an escape 

curve, the detected miss distance can be brought out of the threshold 

region which will then set off the alarm. Examples on this will be 

shown in the next section. For further application, this program can be 

used to test various threshold equations in order to reduce the number 

of false alarms and yet not increase the risk of collision. 

111. RESULTS OF SIWLATION 

The objective of this section is to investigate how the structural 

scattering and noise affects the ability of the TCAS I1 system to 

accurately estimate the target bearing and the miss distance at CPA when 

11 



a TCAS I1 equipped Boeing 737 is approached by an intruder. In this 

report, the intruder takes on two simulated flight paths, i.e., Path One 

and Path Two, as shown in Figure 6 .  

defined in Figure 7. 

spherical coordinates (r,e,+) with respect to the Boeing 737. 

their separation r is small enough so that the magnitude of the noise is 

small, the scattering errors depend on the intruder's azimuth and the 

angles 8 and +. That is, the errors are mainly due to the structural 
scattering. On the other hand, if r is larger, the errors due to noise 

become dominant. The next section examines the bearing and elevation 

angle errors caused by the scattered field as a function of azimuth and 

elevation angles. It is important to emphasize that in Section A errors 

due to noise are not taken into account. 

The coordinate system used here is 

The intruder's location can be represented in the 

When 

A .  Bearing and Elevation Angle Errors due to Structural Scattering 

Before the bearing error curves are shown, it is important to 

define the convention used to measure this error. Figure 8 depicts the 

convention used in this report. Furthermore, the top-mounted TCAS I1 

antenna is located on the centerline of the fuselage of a Boeing 737, 

about 35 ft. from the nose. Figures 9 through 15 show the bearing 

errors when a target's azimuth angle changes. 

corresponds to a different elevation angle. 

situation, the target can be seen as circling around the Boeing 737 at a 

constant radius and elevation angle. 

graphs with the top graph designated as Figure (a) and the bottom graph 

as Figure (b). 

Note that each figure 

As an analogy to a real 

Each figure also consists of two 

The top graphs in Figures 9 through 15 are the bearing 

12 



error curves obtained by using 64 beam positions of the top mounted 

antenna. 

the top mounted array. 

graph covers an azimuth sector of 5.625 degrees while that in the bottom 

graph covers a sector of 45O. 

that the bearing errors are generally reduced by using 64 beam 

positions. Moreover, Figures 9 through 15 show that the bearing errors 

are more severe when the beams are pointed in the vicinity of the tail 

of the aircraft. Furthermore, as pointed out in 161, when the elevation 

angle is between 0' and 2 2 O ,  the direct field radiated by the array will 

be blocked by the vertical stabilizer which results in more severe 

bearing errors as shown by Figures 9 and 10. 

the bearing errors when the target is below the protected aircraft. 

can be seen that the bearing errors increased as the elevation angle 

decreases. As an example, for the case with 64 beams, the standard 

deviation of the bearing error curve changed from 0.637O at 30° 

elevation to 11.4O at - 3 O O  elevation. 

mounted antenna is used, the rolling of an aircraft will affect the 

detection of a target significantly. 

illustrate that the bearing errors are anti-symmetric about the azimuth 

angle of 180° when the TCAS I1 antenna is mounted on the centerline of 

the fuselage and the bearing error is measured as depicted in Figure 8 .  

Figures 16 through 20 show the bearing errors as the target's 

The bottom graphs are obtained by using 8 beam positions of 

In other words, each beam position in the top 

It can be seen from Figures 9 through 15 

Figures 13 through 15 show 

It 

This means that if only the top 

These seven figures also 

elevation angle changes. Each figures corresponds to a different 

azimuth angle. It can be seen that when the azimuth 

is less than 3 5 O ,  i.e., around the nose section, the 

13 

angle of a target 

bearing error is 



smooth and relatively small. However, when the target is behind the 

aircraft and i t  shadowed by the tail, the bearing error is rough and 

more severe. Of particular interest is Figure 17, where the azimuth 

angle is 32.24O, because it can serve as a bearing error lookup table 

for flight Path One. Since this path represents a target coming in at a 

constant azimuth angle of 32.24O, Figure 17 can be used to find the 

scattering error as the target approaches on Path One. 

B. Simulation of TCAS I1 Antenna Tracking a Target 

Figures 21 through 49 show our simulation results on flight Paths 

One and Two. 

such that the first set is from Figures 21 through 27; the second set is 

from 28 through 35; the third and fourth sets are Figures 36 through 42 

and 43 through 49, respectively. 

simulation results on flight Path One when only scattering effects are 

included. The second set of figures includes random noise which is not 

taken into account in the first set. The third and fourth sets of 

figures are simulation results on flight Path Two. 

based on the same logic as the first two sets of figures. 

These results can be divided into four sets of figures 

The first set of figures depicts 

They are obtained 

The effect of structural scattering on the system performance, such 

as miss distance detection, can be examined by separating scattering 

errors from the overall system errors. Furthermore, since noise is 

generated at random with a standard deviation given by Equation ( 3 ) ,  all 

the simulation results will change depending on the noise added. 

comparison purposes, one particular noise curve, shown in Figure 28, is 

chosen for Paths One and Two. 

For 

In addition to Figure 28, four other 
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noise curves and their corresponding miss distance curves are shown from 

Figures 55 through 62. 

each set of figures. 

The following sections will study and interpret 

1. Scattering Effects on Path One 

One reason for choosing Path One is because this path was used by 

Bendix to conduct a series of flight tests. Some of the measurements 

are available in References [4,9] for comparison. Another reason is 

that if the target approaches at a constant azimuth angle, the 

scattering effects are due to a change of the target's elevation which 

can be examined in detail. 

Figures 21 through 27 show simulation results on this path which 

include the real and detected target bearing, bearing rates, bearing 

errors, bearing rate errors, miss distance and miss distance errors. 

Figure 27 shows the color display of the Tektronix terminal. The miss 

distance error in this case is less than 20 meters and the standard 

deviation of the bearing error curve is 0.291O (see Figure 23). 

bearing rate is singular at the origin (see Equation ( 7 ) )  which can be 

seen in Figure 24 where the bearing rate error curve is shown. As 

stated before, this path shows the scattering effects due to the 

target's change of elevation angles for a fixed azimuth angle. 

scattering effects are small (for elevation angles between Oo and 30°) 

when compared to those due to a change of azimuth angles as will be 

shown later on Path Two. 

The 

These 
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2. Noise and Scattering Effects on Path One 

Simulated noise, as shown in Figure 28, is added to the previous 

case. This noise is generated by a Gaussian noise routine where 

(S/N)o=26.4 dB and Ro=20 NMi, corresponding to a transponder power of 27 

dBo (see Table l ) ,  was used in Equation ( 3 )  to calculate uB. 

results of this simulation are shown in Figures 29 through 35. When 

compared to the last case, the miss distance error and the bearing error 

curves are affected the most after the noise was added. The threshold 

curves do not change since they are determined by Equation (13) (see 

Section IIC) and are independent of the noise added. The miss distance 

errors attain a maximum of 1250 meters; a 63-fold increase when compared 

to the preceding case. The standard deviation of the bearing error 

curve also increases from 0.291O to 1.71O. The errors due to the 

scattered fields are almost negligible after noise is added. The 

corresponding color graphic display is shown in Figure 35. 

The 

3 .  Scattering Effects on Path Two 

Path Two is chosen for a target approaching the Boeing 737 from 

behind. The scattering errors on this path are worse than those on Path 

One due to the strong shadowing by the vertical stabilizer. Moreover, 

the target continuously changes its azimuth and elevation angles as it 

approaches the Boeing 737. The scattering effects examined in this case 

are mainly due to a target's change of its azimuth angles. 

comparison purposes, the relative target speed and height are the same 

as those in the previous two cases. 

results on this path. 

For 

Figures 36 through 42 show the 

The bearing error curve in Figure 38 is cyclic in 
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nature with a standard deviation of 0.524O. The miss distance error 

curve shown in Figure 41 also fluctuates as a function of the time to 

CPA. This error curve takes the shape of a damped harmonic with a 

maximum magnitude of 750 meters. 

of this path. All along, the TCAS I1 system predicts that the target is 

not on a collision course since the detected miss distance curve is not 

bounded by the threshold curves. 

Figure 42 depicts the graphic display 

4. Noise and Scattering Effects on Path Two 

The same simulated noise as depicted in Figure 28 is added to Path 

Two. Figures 43 through 49 show the results of this simulation. 

Comparing Figures 41 and 48, it can be seen that the addition of noise 

greatly affects the miss distance curve. 

resulted if a decision would have been made between -40 and -39 seconds 

as shown in Figure 47. 

in Figure 49. 

curves caused by the added noise alone. Comparing Figures 41, 48 and 

51, it can be seen that the shape of the miss distance curve is 

generally determined by the noise added, provided that the standard 

deviation of the added noise is greater than that of the scattering 

errors. 

from 0.524O to 1.85O after noise is added. 

A false alarm could have 

The color graphic display for this path is shown 

Figures 50 and 51 depict the miss distance and its error 

The standard deviation of the bearing error curve increases 

C. Escape Curves 

Each of the four color graphic displays depicted in Figures 27, 35, 

These escape curves are some of 42 and 49 shows a set of escape curves. 
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the possible paths that a TCAS I1 equipped aircraft can take to avoid a 

collision. However, as to which escape curve is followed by the 

protected aircraft will depend on the protected aircraft's ability to 

maneuver. This section examines the tracking of a target when it 

follows an escape curve. As mentioned earlier, the rolling of an 

aircraft when it changes bearing is not yet included in our present 

model. The error will increase when this rolling is taken into account, 

especially when only a top mounted antenna is used. Note that since the 

coordinate system used here is fixed with the protected aircraft, the 

escape curves shown in Figures 27, 35, 42 and 49 indicate the possible 

escape curves followed by the target instead of the TCAS I1 aircraft. 

The solid light blue line in Figure 35 represents an escape curve 

of "6 seconds rollover to 45O". It can be seen from this figure that if 

the target takes this path, the alarm will be turned off 24 seconds 

before the predicted collision. Figure 52 shows the tracking of a 

target when it actually takes this escape curve. 

Figures 35 and 52 is that in Figure 35, the target does not change its 

straight path although an escape curve predicts a safe path is possible. 

On the other hand, Figure 52 shows the tracking of a target after it has 

taken the escape path. 

distance is increased by the target's horizontal maneuver. Because of 

this increase, the magnitude of the detected miss distance is larger 

than the magnitude of the threshold at some point before CPA which means 

that the alarm is then turned off. Figure 54 shows the tracking of a 

target, which originally started on Path Two, as it follows the escape 

curve "6  seconds rollover to 45O". It can be seen from Figures 52 and 

The difference between 

Figures 52 and 53 show that the detected miss 



54 that the detected target location-curve follows quite well the real 

target location-curve. 

D. Some Other Simulation Results on Path One 

Figure 55 through 62 show simulation results on Path One when four 

other noise curves are added. It can be seen that the threshold curves 

shown in Figures 58 and 60 are not large enough to ensure one hundred 

percent threat detection for the two particular noise curves added. 

Figure 61  shows a noise curve with a standard deviation of 0 . 6 ' .  

corresponding miss distance error curve, depicted in Figure 6 2 ,  agrees 

very well with the measured data shown in Figure 63 .  It is noted that 

in all the noise curves shown in Figure 5 5 ,  5 7 ,  59 and 6 1 ,  

(S/N)o= 26.4  dBw and Ro=20 NMi. 

The 

E. The Effect of a Constant Angle Error 

A constant angle of 2' is added to the noise curve shown in Figure 

28 and the resulting noise curve is illustrated in Figure 64 .  

shows the corresponding real and detected miss distance curves after 

this new noise curve is added to Path One. 

it can be seen that this constant angle error does not affect the miss 

distance detection nor the threshold curves. 

Figure 65 

Comparing Figures 34 and 6 5 ,  

In another case, the same noise curve is added to Path Two. Figure 

66 shows the corresponding miss distance error curve. Again, comparing 

Figure 48 and 6 6 ,  it can also be seen that a constant angle error does 

not affect the miss distance error curve. 
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IV. CONCLUSIONS 

A computer program has been developed to simulate the Enhanced TCAS 

I1 System tracking a single target. 

this model, namely, the target path, noise, the alpha beta filter and 

the threat detecting algorithm. 

four components was discussed in this report. It is noted that the 

aircraft use here for demonstration purposes is a Boeing 737 with the 

TCAS I1 antenna mounted on top of the fuselage, about 35 ft. from the 

nose. The same procedure used here can be followed t o  simulate a 

different aircraft or to study the case when the TCAS antenna is mounted 

on the bottom of the fuselage. It is important to keep in mind that the 

antenna location plays a very important role on the computer model of 

the aircraft. 

There are four basic components in 

The implementation of each of these 

As stated at the introduction, the performance of the system is 

negatively affected by interference, hardware-related errors, thermal 

noise, stability of the inertial navigation system, distortion of the 

antenna patterns by own aircraft (also referred to as structural 

scattering), etc. In this study, all these sources of errors were 

separated into two groups, namely, the errors due to structural 

scattering in one group and all the other sources of errors in another 

group. 

zero mean and a variance which was obtained from the error budget 

presented in [Z]. Thus, a careful study can be done of the errors 

The latter group was modeled as a Gaussian noise source with 

introduced by the structural scattering alone. 

results were presented of the bearing errors as a function of azimuth 

for several elevation angles. Results were shown for a system with 8 

A large number of 
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and 64 beam positions, and as expected, the errors are smaller when 64 

beam positions are used instead of 8. It was also shown that there is a 

large increase in errors for negative angles of elevation, i.e., for 

observation points below the horizon, when only a top-mounted antenna is 

used. 

In order to demonstrate the capabilities of the computer model 

described here, two encounters were studied in detail. In one 

encounter, the target approaches the TCAS I1 protected aircraft from the 

front (Path One); while in the second encounter (Path Two), the target 

approaches the TCAS I1 aircraft from behind. It was observed that 

structural scattering plays an important role on the accuracy of the 

system when the target approaches from behind which is expected due to 

strong scattering by the tail of the aircraft. On the other hand, when 

the target approaches the TCAS I1 protected aircraft on Path One, the 

noise seems to affect the accuracy of the system more than structural 

scattering. 

An important feature of the computer simulation is that an 

encounter of the TCAS 11 protected a 

depicted on a color graphics display 

fixed with the TCAS I1 aircraft. As 

airplane, the calculated and true pa 

Furthermore, the true and calculated 

CPA and the miss distance at CPA are 

rcraft with the target can be 

where the coordinate system is 

the target approaches the TCAS I1 

h followed by the target is shown. 

velocity of the target, the time to 

also displayed. Thus, one can 

immediately evaluate the performance of the TCAS I1 system. 

In addition to the path followed by the target, two threshold 

curves (one on each side of the target's path) are also plotted. Thus, 
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at a certain time before CPA, e.g., 30 secs, if the target is within the 

threshold curves, there is danger of collision and a decision can be 

made so that the target (relative to the TCAS I1 aircraft) takes an 

escape path. 

of "6 secs. rollover to 4 5 O " ;  however, the roll of the aircraft as it 

changes bearing is not taken into account at the present time. Thus, 

the results are probably better than what actually happens when only a 

top-mounted antenna is used. 

will be taken into account in order to have a more realistic simulation. 

Results were shown where the target takes an escape path 

In the future, the roll of the aircraft 

As a final remark, the computer simulation described here can be 

used to test the performance of the TCAS I1 antenna mounted on the 

fuselage of an aircraft as it tracks a single target. For example, 

several threshold equations can be tested to find the one that gives 

best results. 
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APPENDIX I 

TEE COLOR CODE FOR THE GKS DISPLAY 

(1) .- ... , .. . . . 1 I i. 1 . 1  f ~ -++++  The actual target location when its elevation 
angle is between Oo and 30°. 

The actual target location when its elevation 
angle is greater than 30°. 

( 3 )  Xx%XXKXXXX The detected target location when the alarm is not 
turned on. 

( 4 )  XXXXXXXXXX The detected target location when the alarm is 
turned on. 

(5) XXXXXXXXXX The detected target location when the alarm could 
have been turned off if the protected aircraft 
would have taken the 6 second rollover to 4 5 O  
escape path. It is emphasized that the protected 
aircraft did not actually change its original 
path. 

(6) C C O O ~ J O O  Same as ( 3 )  but for the target elevation angle 
greater than 30°. 

(7) 0 Same as ( 4 )  but for the target elevation angle 
greater than 30°. 

( 8 )  Same as (5) but for the target elevation angle 
greater than 30°. 

(9) ********** The detected miss distance curve. 

(10) The threshold curve. 

The 10 second rollover to 4 5 O  path. (11) 

The 6 second rollover to 30° path. (12) _ _ _ _ _ _ _ _ _ _ _ _ _ _  

(13)  The 6 second rollover to 4 5 O  path. 

i 
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(a) Received monopulse characteristic curve 
(b) Lookup monopulse characteristic curve 

Figure 1. Received and lookup monopulse characteristic curves. 
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Figure 2. Absolute angle error summary, obtained from Reference [ 2 ] .  
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Figure 4. Angle rate error summary, obtained from Reference [2 ] .  
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(a) 6 seconds rollover to 4 5 O  
( b )  10 seconds rollover to 4 5 O  
( c )  6 seconds rollover to 30° 

Figure 5.  Escape curves. 
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A PATH TWO z 

Equation for Path One: yztan(32.24' x), 2191.4 m 
starting at x=8857 in, speed~174.5 m/s 

Equation for Path Two: y=3000m, z=91.4 m 
starting at x=-10470m, speed474.5 m/s 

Figure 6. The simulated flight paths. 
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Y 

Elevation angle=90-8 
Azimuth angle=+ 

Figure 7. The coordinate system of the TCAS I1 system used in this 
report . 
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TOP VIEW 
A 

When the target is at A ,  the bearing error is +,-+,=a. 
When the target is B, the bearing error is +3-+4=-a. 

Figure 8. Convention used to measure bearing error of the TCAS I1 
equipped Boeing 737. 
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(a) Bearing errors obtained with 64 beam positions 

LOOKUP ELEVATION AT 10 OEG 
ELEVRT.ION ANGLE [ I N  OEGI = 30 
AVERAGE ERROR ( I N  OEGI = 0.28U188 
STANDARD DEVIATION - 0.672981 - 

' o 30 60 90 iio i s 0  i e o  2io 230 z i o  300 330 
A Z I M U T H  R N G L E  ( I N  O E G l  

(b) Bearing errors obtained by 8 beam positions 

Figure 9. Bearing errors as a function of azimuth angles. 
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(b) Bearing errors obtained with 8 beam positions 

Figure 10. Bearing errors as a function of azimuth angles. 
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LOOKUP ELEVFITION A T  10 DEG 
ELEVATION ANGLE [IN OEGI = 
AVERFIGE ERROR ( I N  OEGl = 
STANDARD OEVIRTIQN - 

10 
0.000665 
0 . 8 8 0 8 4 8  

o io 60 90 120 i s 0  i e o  2io 230 270 300 330 

(a) Bearing errors obtained with 64 beam positions 

I '  

FIZI'MUTH ANGLE [ I N  O E G l  

LOOKUP ELEVATION A T  I O  OEG 
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AVERAGE ERROR ( I N  OEGI = 
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(b) Bearing errors obtained with 8 beam positions 
AZIMUTH RNGLE ( I N  D E G I  

Figure 11. Bearing errors as a function of azimuth angles. 
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LOOKUP ELEVRTION AT 10 OEG 
ELEVATION ANGLE [IN OEGI = 
AVERAGE ERROR [ I N  OEGI = 
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(a) Bearing errors obtained with 64 beam positions 
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(b) Bearing errors obtained with 8 beam positions 

Figure 12. Bearing errors as a function of azimuth angles. 
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LOOKUP ELEVATION AT 1 0  DEG 
E L E V A T I ~ N  ;INGLE ( I N  DEGI = - 1 0  
AVERRGE ERHOR [ I N  OEGI = -0.0626r12 
STRNDRRO DEVIATION - 3.092869 - 

' o 3c 60 90 120 150 i ao  210 2uo 270 300 330 
A Z I M U T H  ANGLE ( I N  DEGl  

(a) Bearing errors obtained with 64 beam positions 

LOOKUP ELEVATION A T  1 0  DEG 
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AVERAGE ERROR ( I N  DEG) = 

- 1 0  
-0.069508 - STRNORRO DEVIATION - 3 . 1 3 2 5 6 5  

0 

AZIMUTH RNGLE [ I N  DEGI 
(b) Bearing errors obtained with 8 beam positions 

Bearing errors as a function of azimuth angles. Figure 13. 
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LOOKUP ELEVRTIJN RT IO OEG 
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STRNORRO OEVIRTION 7.898729 

(a) Bearing errors obtained with 64 beam positions 

LOOKUP ELEVRTION AT 10 DEG 
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RZIMUTH RNGLE ( I N  DEG) 

(b) Bearing errors obtained with 8 beam positions 

Figure 14. Bearing errors as a function of azimuth angles. 



LOOKUP ELEVRTION AT 10 DEG 
ELEVATION ANGLE ( I N  DEGI = -30 
AVERAGE ERROR ( I N  DEGl = -0.042378 
STANDARD DEVIATION - ll .llU8393 

0 

F I Z I M U T H  ANGLE [ I N  D E G I  
(a) Bearing errors obtained with 64 beam positions 

LOOKUP ELEVRTION AT 10 DEG 
ELEVATION ANGLE [ I N  DECI = -30 
FIVERAGE ERROR ( I N  DEGl = 0.101251 
STANDARD DEVIATION - 8.94  1263 - 
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(b) Bearing errors obtained with 8 beam positions 

Figure 15. Bearing errors as a function of azimuth angles. 
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IS ELEVATION ANGLES USED 
LOOKUP ELEVATION A T  IO OEG 

AVERAGE ERROR ( I N  O E G l  = 0.103292 - 0.153902 STANORRO OEVlRTlON 

AZlHUlH ANGLE ( I N  OEGl = 0.00000 

. ~-- , .  t 

0 6 12 18 2Y 30 
ELEVATION flNGLE ( I N  DEGl  

Figure 16. Bearing errors as a function of elevation angles (obtained 
by using 8 beam positions). 
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Pigure 17. Bearing errors as a function of elevation angles (obtained 
by using 8 beam positions). 
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15 ELEVATION ANGLES USED 
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Figure 18. Bearing errors as a function of elevation angles (obtained 
by using 8 beam positions). 
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Figure 19. Bearing errors as a function of elevation angles (obtained 
by using 8 beam positions). 
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I S  ELEVATION FINCLES USED 
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STANORAO OEVlATlON - - 

I80.00000 
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Figure 20. Bearing errors as a function of elevation angles (obtained 
by using 8 beam positions). 
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Figure 21. Detected and actual target bearing on Path One with only 

scattering effects. 
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---- Actual bearing rate - Detected bearing rate 
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Figure 23. Bearing errors corresponding to Figure 21. 
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NUMBER OF POINTS= 40 
AVERAGE ERROR= -0.10ll2 
STRNORRO OEVIRTION= 0.3326 
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Figure 24. Bearing rate errors corresponding to Figures 21. 
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Figure 25. Threshold and miss distance curves on Path One with only 
scattering effects. 
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Figure 26. Miss distance error curve on Path One with only scattering 
effects . 

45 



Figure 27. The graphic display of Path One with only scattering 
effects. 

46 



I * I  I I ~ I ~~~ - 1  
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TIME T O  CPA (SECI 
Figure 28. Noise added on Paths One and Two. 

---- Actual bearing - Detected boaring 

HEIGHT= 91. lloooo 
S T A R T S  FIT X =  8857 
Y=RX+C:  R =  0.630662 

VEL [ M / S l =  - 17U. 50000 
: E= 0.0000 
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TIME T O  CPR [SECI 
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Figure 29. Actual and detected target bearing on Path One with noise 
and scattering effects. 
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---- Actual boaring rat. - Dotoctod boaring rat. 
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Figure 30. Bearing rate curve on Path One with noise and scattering 
effects. 
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NUMBER OF POINTS.: UO 
RVERRCE ERROR= -0.0072 
STRNORRO DEVIATION= 0.1960 

u) 

Figure 32. Bearing rate errors on Path One with noise and scattering 
effects . 
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- Detected miss dis tance  0 -.-. Escape envelope of 6 sec t o  45  path 
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Figure 3 4 .  Miss distance error curve on Path One with noise and 
scattering effects. 
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7000 m HEIGHT (in m) 
91.4 
91,4 

Figure 35. The graphic display of Path One with noise and scattering 
effects . 
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---- Actual bearing - Datectod bearing 

HEIGHT= 91.r10000 
S T A R T S  AT X a  -101170 
T=FIX+B: A= 0.000000 

VEL [H/Sl= 17U. 50000 
: B= 3000.0000 
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T I M E  TO CPA ( S E C )  
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Figure 36. Actual and detected target bearing on Path Two with only 
scattering effects. 

---- Actual bearing roto - Detected boaring r a t ~  
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Figure 37. Bearing rate curve on Path Two with only scattering effects. 
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RVERRGE ERROR= -0.7275 
STRNDRRO OEVIRTION= 0.5242 
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Figure 38. Bearing error curve on Path Two with only scattering 
effects. 

RVERRGE ERROR= 0.002s 
STRNDRRO OEVIRTION= 0.0797. 
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Figure 39. Bearing rate error curve on Path Two with only scattering 
effects. 

53 



.... Threshold envelope; - Miss distance dotected ---- Actual miss distance 
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Figure 40. Threshold and miss distance curves on Path Two with only 
scattering effects. 
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- Detected miss distance 
-e-. Escape envelope of 6 sec to 65' path 

Figure 41. Miss distance error curve on Path Two with only scattering 
effects. 
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-il.l6 \ / -2996 

Figure 42. The graphic display of Path Two with only scattering 
effects. 
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---- Actual  bearing - Detected bearing  

H E I G H T =  9 1.4ooou 
S T R R T S  R T  x =  -1ou70 VEL ( M I S 1  = 174.  SO000 
T=FIX+B: A =  o.uoooou : B= 3000.0000 
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Figure 4 3 .  Target bearing curve on Path Two with noise and scattering 
effects. 
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---- Actual bearin rate - Detected beacqng rat0 
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Figure 44. Bearing rate curve on Path Two with noise and scattering 
effects. 

RVERRGE ERROR= -0.3696 
STANDARD DEVIRTION= 1.8455 
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Figure 45. Bearing error curve on Path Two with noise and scattering 
effects. 
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RVERRGE ERROR= 0.0120 
STRNORRO OEVIRTION= 0.2030 
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Figure 4 6 .  Bearing rate error curve on Path Two with noise and 
scattering effects. 

.... Threshold envelope; - Hiss dis tance  d e t e c t e d  
Actual miss d i s t a n c e  -_-_ 

Figure 47. Threshold and miss distance curves on Path Two with noise 
and scattering effects. 
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- Detected miss distance 0 -. -. Escape envelope of 6 sec t o  4 5  path 

.. . . .. .. ... , 

T I M E  T O  CPH [ S E C I  

Figure 48. Miss distance error curve on Path Two with noise and 
scattering effects. 
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50. Threshold and miss distance curves on Path Two with noise 
alone. 

- Detected d 6 S  distance 
--e of 6 sec to 4s' path 

0 
T I M E  TI3 C P A  (SECI 

Figure 51. Hiss distance error curve on Path Two with noise alone. 
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7000 m HEIGHT (in m) 
91.4 
91.4 

Figure 52. The graphic display after the protected aircraft has taken 
an escape curves on Path One. 
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Figure 53. Detected miss distance (corresponding to Figure 52) after 
the protected aircraft has taken an escape curve. 
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Figure 54. The graphic display after the protected aircraft has taken 
an escape curve on Path Two. 

64 



.RVERRCE ERRUR= 0.1030 
STANORRO ,OEVIRTION= 1.2567 

Figure 
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55. Second noise curve added on Path One. 
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Figure 56. Resulting miss distance error curve on Path One. 
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RVERRGE ERROR= 0.2537 
STRNOHRO DEVIF IT ION= 1.3350 
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Figure 57. Third noise curve added on Path One. 

.... Threshold envelope - H i s s  d i s t a n c e  de tec ted  ---- Actual miss d i s t a n c e  ---e Escape envelope of 6 sec t o  45'psth 

66 



RVERRGE ERROR= 0.3102 
SlRNORRD OEVIRTION= 2.0070 

-40 -30 -20 -10 0 
TIME TO CPA (SECI 

Figure 59. Fourth noise curve added on Path One. 

.... Threshold envelope - Hiss distance detected ---- Actual ais8 distance -.-- Escape envelope of 6 rec to 45'path 
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Figure 60. Resulting miss distance error curve on Path One. 
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RVERAGE ERROR= -0.2967 
STRNOARU DEVIRTION= 0.6006 
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Figure 61. Fifth noise curve added on Path One. 
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TIE: 12!24 :06 
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Figure 63. Results of a flight test conducted by Bendix Corporation, 
obtained from Reference [9]. 
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RVERRGE ERROR= 2.3878 
STRNORAD DEVIRTI ( I IN=  1.691U 
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Figure 6 4 .  Noise added to Path One. Note that this noise curve has 
been increased by 2' as compared to Figure 28. 
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- Detected miss distance a -.-. Escape envelope of 6 sec to 45 path 
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Figure 65. Resulting miss distance error curve on Path One. 
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Figure 66. Resulting miss distance error curve on Path Two. 
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